Path integral approach to Brownian motion driven with an ac force.

نویسندگان

  • L Y Chen
  • P L Nash
چکیده

Brownian motion in a periodic potential driven by an ac (oscillatory) force is investigated for the full range of damping constant from the overdamped limit to the underdamped limit. The path (functional) integral approach is advanced to produce formulas for the probability distribution function and for the current of the Brownian particle in response to an ac driving force. The negative friction Langevin dynamics technique is employed to evaluate the dc current for various parameters without invoking the overdamped or the underdamped approximation. The dc current is found to have nonlinear dependence upon the damping constant, the potential parameter, and the ac force magnitude and frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion in periodic potentials with path integral hyperdynamics.

We consider the diffusion of brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single brownian ...

متن کامل

Stochastic differential equations driven by fractional Brownian motions

2 Young’s integrals and stochastic differential equations driven by fractional Brownian motions 4 2.1 Young’s integral and basic estimates . . . . . . . . . . . . . . . . . . 4 2.2 Stochastic differential equations driven by a Hölder path . . . . . . . 7 2.3 Multidimensional extension . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Fractional calculus . . . . . . . . . . . . . . . . . . . ...

متن کامل

Injected Power Fluctuations in Langevin Equation

Using path integral method, we compute exactly the probability density function of the power (averaged over a large time interval of length τ) injected (and dissipated) by the random force into a Brownian particle driven by a Langevin equation. The resulting distribution, as well as the associated large deviation function, display strong asymmetry, whose origin is discussed. Moreover, the so-ca...

متن کامل

Fractional Lévy motion through path integrals

Abstract. Fractional Lévy motion (fLm) is the natural generalization of fractional Brownian motion in the context of self-similar stochastic processes and stable probability distributions. In this paper we give an explicit derivation of the propagator of fLm by using path integral methods. The propagators of Brownian motion and fractional Brownian motion are recovered as particular cases. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 121 9  شماره 

صفحات  -

تاریخ انتشار 2004